
In the past, the shrinkage and dilatancy of sand have been assessed
in terms of the increase and decrease of the total volume. Due to the
discrete nature of the sand, localized shrinkage or dilatancy may have
taken place in localized areas of the sample, while the overall bulk
strain is not visible. Therefore, it is necessary to reveal the shrinkage
and dilatancy phenomenon of saturated sand from a microscopic
perspective.

Introduction

• The macro and micro mechanical behavior and deformation properties of 
samples with different initial void ratios in drained tests are analyzed. 

• The contribution weight of the anisotropy coefficient to shear strength is 
analyzed, and its correlations with the phase transition state and critical 
state are discussed.

• Evolution process of the velocity field, rotation field, and damping energy 
from shrinkage to dilatancy of the sand are exhibited.
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Methodse

Numerical model

The phase transition state of saturated sand can be reflected by the extreme values of void ratio, sliding ratio, suspended particle ratio and mechanical coordination 
number. The microscopic parameters can reveal the critical state of saturated sand earlier than the macroscopic parameters. The evolution process of rotation field 
and damping energy show that the particle collision on the 45° shear surface is intense. The particle motion in the diagonal range is dominated by rotation.

Results

Macroscopic behavior
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Rose chart of contact forces between particles (a)Normal contact force;(b)Tangential contact force
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Microscopic behavior
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Figure 10. Evolution process of particles: (a)Velocity field; (b) Rotation field; (c) Damping energy

The intergranular contact force reaches the maximum at the phase transition state (ε1=2.8%). Before the phase 
transition state (ε1=2.8%), the  intergranular forces increase continuously, shear shrinkage occurs. When the 
normal and tangential contact forces gradually decrease ,the soil changes from shear shrinkage to dilatancy.
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