
VuLASTE: Long Sequence Model with Abstract Syntax Tree Embedding 

for Vulnerability Detection

Botong Zhu, Huobin Tan
Beihang University, School of Software, China

• Vulnerability detection is the process of identifying and locating vulnerabilities,

which are weaknesses or security flaws in software that can be exploited by

attackers to gain unauthorized access or perform malicious actions.

• With natural language models, vulnerability detection in source code can be

regarded as a text classification task.

• We proposed VuLASTE (Vulnerability detection Long sequence model with

Abstract Syntax Tree Embedding), a deep-learning model for vulnerability

detection.

INTRODUCTION

We built a new cross-language vulnerability dataset from real open-source projects.

• GitHub Advisory Database (GHSA) as 

data source, generated in 2022 March.

• Contains a variety of popular 

programming languages (C, C++, Java, 

Python, Go).

• Negative cases are 8601, positive 

cases are 2471.

DATA

CONCLUSION

In this paper, we proposed VuLASTE, a deep learning model to detect vulnerable codes. To deal with vocabulary explosion problem, our model use BPE algorithm in tokenizing. This

model adds AST path embedding to provide a lightweight representation for programming language nesting structure. To replace the program slicing method, we use a long sequence

attention mechanism from Longformer, combining global attention and windowed attention, to capture long-term semantic in source code. We also extracted a dataset from real-world

open source repositories from Github Security Advisory Database. Experiment results show that comparing with existing researches, VuLASTE can better select source code pieces

that may be vulnerable when candidate number is limited.

RESULTS

Figure 1: The general framework of VuLASTE

Figure 2: AST path Embedding

REFERENCES
1. M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of machine learning for big code and naturalness,” ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

2. I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document transformer,” arXiv preprint arXiv:2004.05150, 2020.

3. Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming and natural languages,” in Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 
1536–1547.

Table 1: Length statistics of dataset

Length Count

[0.0, 512.0) 6200

[512.0, 1024.0) 1616

[1024.0, 2048.0) 1560

[2048.0, 5096.0) 1180

[5096.0, inf) 516

DESIGN OF MODEL

Figure 3: Long sequence attention

𝑊𝑎,𝑧 =< 𝑒𝑎,𝑏, 𝑒𝑏,𝑐 , . . . , 𝑒𝑦,𝑧 >

𝐴𝐸 𝑡 = 
𝑒∈𝑊𝑟𝑜𝑜𝑡,𝑙

𝑛𝑖∈𝜙 𝑒

𝑣 𝑒𝑐 𝑛𝑖

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑡 = 𝑊𝐸 𝑡 + 𝑃𝐸 𝑡 + 𝑇𝑇 𝑡 + 𝐴𝐸 𝑡

𝜙 𝑒𝑛𝑖,𝑛𝑗 =< 𝑛𝑖 , 𝑛𝑗 >AST edge

AST path

AST path Embedding

Final Embedding

AST Path Embedding

Compared with natural language text, programming language text is more structured and

the structural information has a deeper influence on the semantics. This paper adds ast

path embedding to the model, to provide a lightweight representation of ast structure to

encode the nested structural information of token in programming language text.

Figure 4: Heat visualization of attention weights

Model 
hits

@50 
@100 @200 @500 recall f1

VuLASTE 29 51 86 228 0.482 0.4801

VulDeePec

ker 
6 12 33 77 0.5404 0.1941

SySeVR-

BGRU 
5 15 37 85 0.3826 0.241

CodeBERT 3 6 24 63 0.4463 0.4203

VUDDY 0 0 0 0 - 0

Table 2: The metrics of different models
Metrics

We use top-k hits as the main metric of evaluating the performance of models, and recall as the second evaluation method.

One reason to use top-k hits as a metric is that it can be more forgiving of false negatives. In a vulnerability detection task, it is

often more important to identify as many vulnerabilities as possible, even if this means that the model may also produce some

false positives.

To understand how the model is weighting different parts of the input code when making a prediction, attention weights are

visualized. As the attention weights picture shows, the model mainly focuses on high-risk operations that may cause

vulnerabilities, such as left shift and Exception handling. This result may suggest that the VuLASTE is able to identify these

patterns effectively and correctly. This is a great indication that the model is working effectively and has learned to recognize

the characteristics of vulnerable code.

Model 
hits

@50 
@100 @200 @500 recall f1

VuLASTE 29 51 86 228 0.482 0.4801

no AST 3 15 27 66 0.4983 0.3582

self 

attention 
4 15 28 81 0.5369 0.3794

cross 

entropy 
0 0 0 0 - 0

VuLASTE 29 51 86 228 0.482 0.4801

Table 3: The results of ablation study

Attention weights visualization


	幻灯片 1

